Discriminating codes in bipartite graphs

نویسندگان

  • Emmanuel Charbit
  • Irène Charon
  • Gérard D. Cohen
  • Olivier Hudry
چکیده

We study some combinatorial and algorithmic properties of discriminating codes in bipartite graphs. In particular, we provide bounds on minimum discriminating codes and give constructions. We also show that upperbounding the size of a discriminating code is NP-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity

Consider an undirected bipartite graph G = (V = I ∪A,E), with no edge inside I nor A. For any vertex v ∈ V , let N(v) be the set of neighbours of v. A code C ⊆ A is said to be discriminating if all the sets N(i) ∩ C, i ∈ I, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minim...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

A Lower Bound for a Class of Graph Based Loss-resilient Codes Work of Both Authors Has Been Supported by Grant 21-49626.96 from Schweizer Nation- Alfonds (snf)

Recently, Luby et al. constructed information-theoretically almost optimal loss-resilient codes. The construction is based on a sequence of bipartite graphs. Using a probabilistic construction for the individual bipartite graphs, they obtain loss-resilient codes that have very eecient encoding and decoding algorithms. They left open the question whether there are other bipartite graphs leading ...

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006